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Abstract – 

As robots are envisioned to be deployed in 

construction job sites to work with humans, there is 

an increasing need for developing intuitive and 

natural communication between robots and humans. 

In particular, spatial information exchange is critical 

to navigating or delegating tasks to collaborative 

robots. However, such deictic gestures are inherently 

imprecise and ambiguous. Thus, it is challenging for 

robots to reason about the exact region of interest, 

especially in a cluttered large-scale construction 

environment. To address this limitation, this study 

evaluates the performance of spatial information 

exchange through the experiments based on pointing 

targets on the wall and ceiling, which are the most 

common workspaces in construction. We observed 

that the current deictic gesture-based method can 

estimate the pointed position on the wall and ceiling 

with a mean distance error of 0.767m, while the error 

tends to increase by 0.715m in the ceiling and 0.115m 

in the side panels. Our experimental results indicate 

that the deictic gesture-based method has some 

challenges in ceiling and side panel conditions, while 

the overall panel recognition shows acceptable 

performance. The findings of this study will help 

novice construction workers naturally and effectively 

communicate with robots by delivering spatial 

information on specific objects or regions in the 

shared workspace. 
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1 Introduction 

As robotic technologies have advanced, the focus of 

robot adoption has shifted from large-scale robotic 

platforms to small-scaled task robots [1]. These robots 

are designed for various applications and have shown 

possibilities of the collaboration of robots and humans in 

construction sites. As they interact with people during 

task execution, there is a growing need for a more 

intuitive and natural human-robot communication 

interface. In particular, spatial information exchange (e.g., 

target objects or regions of interest) is critical to 

navigating or delegating tasks to collaborative robots. 

Potential human-robot collaborative applications, for 

example, include controlling a robot to change its 

position [2], referring to a target object [3], and indicating 

target ceiling panel for installation [4] or target wall area 

for painting [5]. In human-human interactions, people 

often utilize deictic gestures to deliver spatial 

information, which are effective means to develop a 

mutual understanding of a referent with others [6]. 

Deictic gestures are especially beneficial for construction 

applications because they require no additional devices, 

and therefore are intuitive for novice users. 

However, deictic gestures are known to be inherently 

imprecise and ambiguous for both humans and robots. It 

is especially challenging for a robot to reason about the 

exact region of interest in an unstructured and cluttered 

construction environment. Construction tasks are carried 

out in a large-scale 3-dimensional (3D) environment; 

thus, it is necessary to share various dimensional and 

scaled spatial information (e.g., floor vs. wall vs. ceiling, 

centered vs. angled). Although several previous works 

showed the performance of gesture-based spatial 

information exchange for short-distance applications 

(e.g., table, wall, and floor [7]), it has not been evaluated 

in a comparatively large environment. Thus, this study 

aims to identify the challenges associated with the deictic 

gesture-based spatial referencing in a large-scale 

environment. This was done by evaluating the 

performance of spatial information exchange through the 

experiments based on pointing targets on the wall and 

ceiling, which are the most common workspaces in 

construction. The findings can guide and inform our 

approaches to developing collaborative construction 

robots supported with a natural human-robot interface. 
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2 Background 

2.1 Deictic Gesture-Based Spatial Referencing 

Deictic gestures are often referred to as “pointing 

gestures”, typically performed by extending the arm and 

the index finger [8,9]. In general, people often use 

pointing gestures to deliver spatial information to others. 

In other words, deictic gestures are fundamental to direct 

others’ attention to objects and help develop a mutual 

understanding of objects in space [10,11]. 

Deictic gesture-based spatial referencing has been 

explored substantially in previous works for developing 

and evaluating various spatial referencing models 

according to task requirements. This large body of work 

shares the same purpose: to solve the problem of 

interpreting deictic gestures in order to map the referent 

in the environment that the user wants to indicate [2]. 

Tölgyessy et al. [12] presented a spatial referencing 

method navigating a mobile robot to an endpoint marker 

on the ground floor defined by a pointing gesture of a 

human operator. The suggested method shows the precise 

positioning of all the entities included in the interaction 

in 3D space. Jevtić et al. [13] employed pointing 

recognition for selecting shoes placed on the platform in 

front of the user. Furthermore, they exploited the concept 

of multi-modality to develop personalized interaction 

with a robot assistant for assisted dressing. Mayer et al. 

[14] evaluated humans’ referencing accuracy when 

interpreting deictic gestures for pointing the targets 

positioned horizontally on the wall. However, they only 

measured the performance in a collaborative virtual 

environment (CVE). 

While previous works showed acceptable 

performance of the deictic gesture-based spatial 

referencing for short-distance applications, limited 

applications in large-scale environments need to be 

further evaluated. 

2.2 Deictic Gesture Recognition 

Deictic gesture-based spatial referencing aims to 

exchange accurate spatial information through deictic 

gestures. Therefore, deictic gesture recognition has a 

significant impact on the final referencing results. 

Two main approaches for deictic gesture recognition 

have been proposed in the literature. One is a wearable 

sensor-based approach. This approach attempts to 

recognize deictic gesture by analyzing the electrical 

muscle stimulation (EMS) from electromyography 

(EMG) generated during the muscle activity [15,16], the 

change in measures from inertial measurement units 

(IMUs) [2,17], and the posture and motion data from data 

gloves [18]. However, although wearable sensors have 

the benefit of direct acquisition of the spatial posture of 

the pointing arm, they often require connection to a data 

acquisition (DAQ) device, thus restricting the 

applicability of this method outside of a controlled 

environment [19,20]. 

Meanwhile, recent advances in computer vision 

technologies have brought vision-based approaches to 

mainstream deictic gesture recognition. Vision-based 

deictic gesture recognition does not require users any 

additional devices and only employs their pointing arms 

within the camera angle. Earlier approaches detected 

gestures through the visual features (i.e., skin-color blobs) 

collected from monocular cameras (e.g., RGB or infrared 

camera) [21] and binocular cameras [22].  

Recent works on vision-based approaches have 

focused on the implementation of RGB-D cameras. 

Owing to the ability to augment the RGB image with 

depth information, RGB-D cameras are frequently being 

adopted in vision-based approaches. 

In a vision-based approach, the deictic gesture is 

defined based on the relationships among the body joints. 

Three main models for estimating the pointing direction 

were developed [12,23]: 

• Elbow-wrist model assumes that the pointing 

direction is defined by a vector connecting the 

elbow and the wrist (hand) of the pointing arm. 

• Head-wrist model assumes that the pointing 

direction is defined by a vector connecting the head 

and the wrist (hand) of the pointing arm. 

• Shoulder-wrist model assumes that the pointing 

direction is defined by a vector connecting the 

shoulder and the wrist (hand) of the pointing arm. 

The choice of a particular model mainly depends on 

the task and on the technology available for sensing the 

subject’s posture [2]. This work evaluates the 

performance of the spatial referencing method using a 

shoulder-wrist model, because the elbow-wrist model 

gives lower accuracy in large-scale environments and the 

head-wrist model has potential problems associated with 

the occlusion in pose estimation (i.e., safety helmets) [24]. 

3 Methodology 

3.1 Deictic Gesture Detection 

The detection of the deictic gesture is performed 

based on the 3D human skeletal data extracted from the 

RGB and depth images. To estimate the human skeletal 

data, we employ OpenPose [25] library, a real-time 

human pose estimation system. The library (BODY-25 

model) detects 25 human body joints from each RGB 

image frame in 2D coordinates. The 2D coordinates are 

then projected to corresponding 3D points using the 

depth information [26]. 

In particular, we focus on the position of the shoulder 

𝐩𝑠 = (𝑥𝑠, 𝑦𝑠 , 𝑧𝑠), elbow 𝐩𝑒 = (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒), and the wrist 
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𝐩𝑤 = (𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤)  joints for deictic gesture detection, 

which is required for the selected shoulder-wrist model. 

We use wrist position instead of fingers, considering the 

computation efficiency for further on-site applications. 

Given the position of the three body joints, the elbow 

joint angle θ is defined by:  

cos 𝜃 =
𝐯𝑠𝑒 ⋅ 𝐯𝑠𝑤

|𝐯𝑠𝑒||𝐯𝑠𝑤|
 (1) 

where 𝐯𝑠𝑒 = 𝐩𝑒 − 𝐩𝑠 is the vector from the shoulder 

to the elbow joint and 𝐯𝑠𝑤 = 𝐩𝑤 − 𝐩𝑠 is the vector from 

the shoulder to the wrist joint. If θ is below a predefined 

angle, the system assumes that the person is stretching 

their arm for “pointing” and performs the panel 

estimation. 

3.2 Pointed Panel Estimation 

To estimate the pointed panel, we first compute the 

pointed position. The pointing direction is defined by a 

straight line starting from the shoulder to the wrist joint: 

𝐬 = 𝐩𝑠 + 𝜆(𝐩𝑤 − 𝐩𝑠), 𝜆 ∈ ℝ (2) 

For a ceiling pointing task, panels are parallel to floor 

at a constant height of the ceiling ℎ . Therefore, the 

pointed position 𝐩𝑝 = (𝑥𝑝 , 𝑦𝑝, 𝑧𝑝)  is calculated as 

follows: 

𝑥𝑝 = 𝑥𝑠 +
ℎ − 𝑧𝑠

𝑧𝑤 − 𝑧𝑠

(𝑥𝑤 − 𝑥𝑠) (3) 

𝑦𝑝 = 𝑦𝑠 +
ℎ − 𝑧𝑠

𝑧𝑤 − 𝑧𝑠

(𝑦𝑤 − 𝑦𝑠) (4) 

𝑧𝑝 = ℎ (5) 

In a wall pointing task, panels are parallel to wall at a 

constant distance 𝑑 . Thus, akin to ceiling, the pointed 

position in this case is computed as: 

𝑥𝑝 = 𝑑 (6) 

𝑦𝑝 = 𝑦𝑠 +
𝑑 − 𝑥𝑠

𝑥𝑤 − 𝑥𝑠

(𝑦𝑤 − 𝑦𝑠) (7) 

𝑧𝑝 = 𝑧𝑠 +
𝑑 − 𝑥𝑠

𝑥𝑤 − 𝑥𝑠

(𝑧𝑤 − 𝑧𝑠) (8) 

The pointed target is then estimated using the pointed 

position. Let 𝐩𝑡,𝑖 be the center point of the target panel 

index 𝑖 ∈ {1, 2, 3, . . . , 𝑛}, where 𝑛 ∈ ℕ. A panel with the 

closest Euclidean distance from the center point is 

selected as a pointed panel 𝑖𝑝. 

𝑖𝑝 = arg min
𝑖

(|𝐩𝑝 − 𝐩𝑡,𝑖|) (9) 

4 Experiment 

4.1 Experimental Setup 

The experimental setup is depicted in Figure 1. The 

RGB and depth images are simultaneously captured by 

Intel RealSense™ Depth Camera D435 at a frame rate of 

up to 30 fps and with an image resolution of 640 x 480 

pixels and 840 x 480 pixels, respectively. The camera has 

an operating range of 0.11-10m. It is installed at position 

𝐩𝑐  facing participants, at the height of 0.7m and the 

pointing subject is located at position 𝐩ℎ , 3.0m away 

from the camera. Five target panels with an equal size of 

0.7 x 0.7m are located side by side on both ceiling and 

wall.  

Four participants (two males and two females) were 

recruited to perform the pointing tasks. Each participant 

performed two experiments, 15 iterations for each 

experiment. A single iteration consists of 10 pointing 

trials: five ceiling panels (from C1 to C5) and five wall 

panels (from W1 to W5), in sequential order. In sum, we 

obtained 2 x 15 x 10 = 300 trials for each participant. A 

single experiment took approximately 10 minutes per 

participant.  

 

Figure 1. Illustration of the experimental 

environment. 

4.2 Performance Metrics 

We use the following metrics to evaluate the 

performance of the deictic gesture-based spatial 

referencing. 

Distance error. Euclidean distance between the 

pointed position 𝐩𝑝  and the center point of the target 

panel 𝐩𝑡. 

𝜀 = |𝐩𝑝 − 𝐩𝑡|.  (10) 

F1 score. We also refer to this measure as panel 

recognition rate (see Section 5.2). F1 score is defined by: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

For each pointed position, we consider it as true 

positive (TP) if it is classified as a correct target panel, 

false negative (FN) if it is classified as other target panels, 

false positive (FP) if the subject is pointing at other target 

panels, and true negative (TN) if the subject is pointing 

at other target panels but classified correctly.  

5 Results 

A total of 1,200 pointing trials of four pointing 

subjects were evaluated in an offline setting in order to 

validate the performance of the spatial referencing 

method. The main results are shown in Table 1 and Table 

2. 

5.1 Distance Error 

The distance error by the pointing subject is shown in 

Figure 2. We observed a similar tendency between all 

four participants: on average, the ceiling pointing task 

yielded a higher mean distance error and standard 

deviation (1.125 ± 0.263m) compared to the wall 

pointing task (0.410 ± 0.174m).  

Among the subjects, Subject 3 reached the highest 

mean distance error for the ceiling pointing task with 

0.482m of distance gap between the lowest, Subject 1. 

For the wall, Subject 2 showed the highest distance error 

with 0.207m of distance gap between the lowest, Subject 

1.  

Moreover, the mean distance error was higher when 

pointing the side panels (0.836 ± 0.241 for C1/C5 and 

W1/W5) than the panels near the center (0.721 ± 0.210 

for C2-C4 and W2-W4). This phenomenon will be 

expanded up in Section 5. 

5.2 Panel Recognition Rate 

We found that the ceiling pointing task shows a lower 

panel recognition rate. The mean F1 score of the ceiling 

pointing task was 0.815, while the wall pointing task was 

0.896.  

Higher error distance increases the probability of 

inferring the wrong panels located nearby, which in turn 

lowers the panel recognition rate. Therefore, the F1 score 

tends to follow the reverse order of the distance error. 

This tendency is especially salient in the panels near the 

center. 

 

Figure 2. Distance error by the pointing subject. 

(C1-C5 and W1-W5 refers to target ceiling and 

wall panels from left to right, respectively.)

Table 1. Evaluation results of the ceiling pointing task: Distance error (Mean ± SD) and F1 score. 

Metrics C1 C2 C3 C4 C5 

Distance Error (m) 1.118 ± 0.243 1.159 ± 0.197 1.121 ± 0.216 1.090 ± 0.319 1.135 ± 0.316 

F1 Score 0.849 0.826 0.837 0.756 0.808 

Table 2. Evaluation results of the wall pointing task: Distance error (Mean ± SD) and F1 score. 

Metrics W1 W2 W3 W4 W5 

Distance Error (m) 0.561 ± 0.204 0.325 ± 0.134 0.282 ± 0.196 0.352 ± 0.145 0.530 ± 0.180 

F1 Score 0.948 0.802 0.946 0.861 0.921 

6 Discussion 

Our experimental results present that the current 

deictic gesture-based method can estimate the pointed 

position on the wall and ceiling with a mean distance 

error of 0.767m. We observed worse performance in the 

ceiling with a mean distance error of 1.125m, which was 

0.715m higher than the mean distance error of the wall. 

In the estimation of the panel, the mean F1 score dropped 

at a rate of 8.98% compared to the wall. These measures 

indicate that variation in plane causes a performance gap 

in the dimensional information exchange regarding the 

perception accuracy and target recognition rate. 

Furthermore, the mean distance error tends to 

increase by 15.91% when the target changes from the 
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center to side panels. In this situation, a subject mainly 

delivers the scaled spatial information to a robot. 

In general, these results can be explained by the 

pinhole projection model (Figure 3). Human eyes see the 

world via pinhole projection. The 3D world (on the world 

coordinate system) is projected onto a flat projection 

plane: this plane is focal length 𝑑  away from the 

projective center along the 𝑍ℎ  axis (on the human 

coordinate system), the gaze direction [27]. Thus, a 3D 

point 𝐩 = (𝑥ℎ , 𝑦ℎ , 𝑧ℎ) in the human coordinate system is 

projected to 2D coordinates on the projection plane at a 

rate of 𝑑/𝑧ℎ: 𝐩′ = (𝑥ℎ , 𝑦ℎ)𝑑/𝑧ℎ. Therefore, the area of 

the target panel is also projected to the projection plane, 

affecting the visible area of the panel with respect to the 

rate of 𝑑/𝑧ℎ. 

 

Figure 3. Pinhole projection model [27]. 

The top and side views of the experiment setup are 

depicted in Figure 4. 𝐀0 and  𝐀1 refers to the visible area 

of the panels projected on the projection plane, 

perpendicular to the gaze direction 𝑍0 and 𝑍1 (Here, we 

assume a person gazes at the center of the target panels 

when pointing). In both situations, 𝐀0 is larger than 𝐀1 

due to the difference in between the angles 𝜃0 and 𝜃1, as 

well as the position of the panels. A smaller visible area 

hinders the subjects from pointing precisely while 

maintaining consistency. Thus, compared to the targets 

with comparatively large visible areas (wall and center 

panels), the performance degrades in the targets with 

small visible areas (ceiling and side panels). Overall, it 

can be noted that the visible area of the target is a crucial 

factor for human’s ability of deictic gesture-based spatial 

referencing for both wall and ceiling conditions. 

Therefore, in practice, one can expect lower performance 

in referencing a distanced and angled regions of interest 

in overhead operations (e.g., electrical wiring, plumbing, 

and interior finishing work). In such situations, 

collaborative robots need mobility for estimation of the 

workspace geometry through navigating themselves 

closer to the target. 

Considering the results mentioned above, we see 

three ways to improve the current spatial referencing 

method for application in collaborative construction 

robots. First, we could give the robot dimensional and 

scaled spatial information with interaction modalities 

(i.e., speech). This allows the robot to reason about the 

region of interest with additional criteria, thus enhancing 

perception accuracy. Presenting the spatial information 

with a form of region could be considered as well. 

Deictics are often thought of as referring to an object but 

can also be used to refer to a region of space [8]. This 

method provides interpretability and predictability to the 

user intent and has a collateral benefit of correction. 

Lastly, as suggested by Medeiros et al. [20], visual 

feedback makes a difference in the accuracy of the 

pointing task. In particular, we could enhance human’s 

ability to indicate the target with a smaller visible area by 

receiving visual feedback from robots.

 

Figure 4. The top (left) and side (right) views of the experimental environment. The panels were spaced for a 

better understanding. 
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7 Conclusion 

This work explored the challenges of the current 

spatial referencing method based on deictic gestures. It is 

challenging for a robot to reason about the exact region 

of interest in a large-scale 3D construction environment, 

cluttered in many situations. In this context, we 

selectively overviewed the performance of deictic 

gesture-based spatial information exchange in wall and 

ceiling with various angle conditions and discussed some 

solutions. Evaluation results show that the performance 

degrades in exchanging spatial information on the ceiling 

and side panels pertaining to the perception accuracy and 

the target recognition rate. The results also imply that the 

target’s visible area is a crucial factor for human’s ability 

of deictic gesture-based spatial information exchange for 

both wall and ceiling conditions. These findings can 

guide and inform our approaches to developing 

collaborative construction robots supported with an 

intuitive and natural human-robot interface. 

In this work, we limited our focus on the performance 

evaluation to the robot’s interpretation ability. Future 

work will include performance evaluation on the 

human’s interpretation ability in a large-scale 

environment for a higher level of the collaborative 

environment such as shared autonomy. Furthermore, 

while we performed data processing and evaluation 

offline, we intend to further our research on on-site 

application of this method. 
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